

D4.2-TN7: EGNSS functional test report

DELIVERABLE DETAILS			
Deliverable Nr	Lead Beneficiary	Dissemination Level	Status
D4.2	WAY4WARD	PU	CONTROLLED
Edition	Revision	Issue	Document Code
00	0	01.00	D4.2_01.00
File Name	D4.2 - TN7 EGNSS functional test report_1.0.docx		
Ref. Template	D0.0-Certiflight Document Template_01.00.dotx		

DOCUMENT HISTORY					
lssue	Date	Status	Author	Partner	Change Description
00.01	26/07/2024	DRAFT	Joseph	W4W	First version
			Locantore		
00.02	30/07/2024	DRAFT	Francesco	TOP	Review of first draft
			Russo		
00.03	30/10/2024	DRAFT	Joseph	W4W	Final version of the document
			Locantore		with all its test completed
01.00	31/10/2024	CONTROLLED	Francesco	TOP	Formal review
			Russo		
			A.Mennella		

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 1 of 36
--	-----------------

APPLICABLE DOCUMENTS			
Ref.	File Name	Description	
AD 1	Grant Agreement-101082484-CERTIFLIGHT	Project Grant Agreement	
AD 2	D2.6-CONOPS and System Requirements	CERTIFLIGHT System Requirements and	
		CONOPS specification.	
AD 3	D4.1-CERTIFLIGHT solution verification plan	Verification plan to fulfil the system	
		requirements defined in the System	
		Requirements document	
AD 4	TN5: DKF and Spoofing detection SW library	Technical specification SW library of	
	documentation	GNSS Algorithms for Spoofing detection	
		for Certiflight platform.	
AD 5	D1.2 - Project Management Plan v2.0	Project Management Plan document	
		v2.0 with updated Risk Matrix	
AD 6	TN2 – UTM Box dataset analysis	The purpose of the note is to collect the	
		comments, and the analysis related to	
		the dataset to be injected in the	
		APP software library.	

REFERENCE DOCUMENTS		
Ref.	File Name	Description
RD 1	-	-

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 2 of 36
--	-----------------

This document is part of a project that has received funding from the EUSPA under grant agreement No 101082484 under European Union's Horizon Europe programme, funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Union Agency for the Space Programme ('granting authority'). Neither the European Union nor the granting authority can be held responsible for them.

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 3 of 36
--	-----------------

SUMMARY

ABST	FRACT	7
1	SCOPE OF THE DOCUMENT	8
1.1	Acronyms	9
2	TEST PROCEDURE	
3	EGNSS REQUIREMENT VERIFICATION MATRIX	10
4	TEST REPORT	
4.1	REP_EGNSS.0010 APP/GSD INPUT VERIFICATION	
4.1.1	1 Test execution and results	
4.2	REP_EGNSS.0020 APP Performance Verification	
4.2.1	1 Test execution and results	
4.3	REP_EGNSS.0030 GNSS OUTAGES VERIFICATION	
4.3.1	1 Test execution and results	
4.4	REP_EGNSS.0040 GSD Performance Verification	
4.4.1	1 Test execution and results	

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 4 of 36	
--	-----------------	--

LIST OF FIGURES

FIGURE 1-1 SYSTEM ARCHITECTURE	8
FIGURE 4-1 – SEPTENTRIO NOMINAL CONFIGURATION	18
FIGURE 4-2 – IMU DATASET NOMINAL HEADER	18
FIGURE 4-3 – APP_LIB NOMINAL RESPONSE	18
FIGURE 4-4 – SEPTENTRIO ALTERED CONFIGURATION	19
FIGURE 4-5 – APP_LIB ERROR 100	19
FIGURE 4-6 - APP_LIB ERROR 101	20
FIGURE 4-7 - APP_LIB ERROR 200	20
FIGURE 4-8 - APP_LIB ERROR 201	20
FIGURE 4-9 - APP_LIB ERROR 300	20
FIGURE 4-10 – ALTERED IMU DATASET	20
FIGURE 4-11 – GSD_LIB RESPONSE IN ALTERED CONDITION	21
FIGURE 4-12 – GSD_LIB RESPONSE IN NOMINAL CONDITION	21
FIGURE 4-13 – MARLIN TO DEVICE	23
FIGURE 4-14 – TEST SETUP MARLIN TO MOUNTED ON DJI M300	24
FIGURE 4-15 – EXAMPLE OF TEST TRAJECTORY	25
FIGURE 4-16 – NR OF GAL AUTHENTICATED SATELLITES	25
FIGURE 4-17 – HORIZONTAL ERROR ACCURACY	26
FIGURE 4-18 – VERTICAL ERROR ACCURACY	26
FIGURE 4-19 – VELOCITY ERROR ACCURACY	27
FIGURE 4-20 – APP VS RTK HEADING SOLUTION	27
FIGURE 4-21 – HEADING ERROR ACCURACY WITH AMBIGUITY POINTS	28
FIGURE 4-22 – HEADING ERROR ACCURACY WITHOUT AMBIGUITY POINTS	28
FIGURE 4-23 – APP SOLUTION. CSV SAMPLE	29
FIGURE 4-24 – HORIZONTAL ERROR DURING GNSS OUTAGES	30
FIGURE 4-25 – VERTICAL ERROR DURING GNSS OUTAGES	30
FIGURE 4-26 – VELOCITY ERROR DURING GNSS OUTAGES	30
FIGURE 4-27 – APP SOLUTION. CSV SAMPLE WITH GNSS OUTAGES	31
FIGURE 4-29 CONFUSION MATRIX FOR THE VERIFICATION PREDICTIONS OF THE GSD ALGORITHM UTILIZING A SING MULTI-ATTACK DATASET	LE 33
FIGURE 4-30 CONFUSION MATRIX FOR THE VERIFICATION PREDICTIONS OF THE GSD ALGORITHM UTILIZING A SING MEACONING (100 NS DELAY) TEST CAMPAIGN	LE 34
FIGURE 4-31 AN EXAMPLE OF OUTPUT FILE FOR THE GSD FUNCTION	35

© 2024 CEPTIELICHT Repeticiption ALL RICHTS RESERVED	Page
© 2024 CENTIFLIGHT BETEILGHTES ~ ALL NIGHTS RESERVED.	5 of 36

LIST OF TABLES

TABLE 1-1 ACRONYMS LIST	9
TABLE 4-1 GSD'S PERFORMANCE ROBUSTNESS TEST	34

© 2024 CERTIELIGHT Repeticiaries ALL RIGHTS RESERVED	Page
© 2024 CENTIFICIAN DENCINANCE ALL MONTS RESERVED.	6 of 36

Abstract

This document represents the contractual deliverable (Technical note) D4.2-TN7: EGNSS functional test report. The document includes tests to verify the functionality and performance of the APP and GSD algorithms, along with their respective results

Status of the tests					
Test name	Status	Notes			
TEST_EGNSS.00010 APP/GSD Input Verification	Completed	-			
TEST_ EGNSS.00020 APP Performance Verification	Completed				
TEST_EGNSS.00030 GNSS Outages Verification	Completed				
TEST_ EGNSS.00040 GSD Performance Verification	Completed	_			

	DISSEMINATION LEVEL	DELIVERABLE NR	PAGES			
F	PU D4.2					
L	TITLE					
	TN7: EGNSS functional test report					

1 Scope of the document

The scope of the document is to report the results of test case described in section 4 of the verification plan (D4.1). In particular, this technical note reports the results of test codes TEST_EGNSS_00XX.

Figure 1-1 System architecture

To facilitate the reading, the Architecture of Certiflight is reproposed in the Figure 1-1, with a brief explanation of modules tested in this document.

This document describes the tests of APP and GSD modules, both part of the Certiflight Portal:

- Authenticated Position Propagation (APP) Module: The APP function outcomes will be integrated in the "Full report". The input to APP algorithm, specified in the requirement CFT-SYS-0950 of D2.6 document allows the algorithm to provide the following information, in post-flight, to be included in the full report:
 - a trustable position information starting from an authenticated position
 - computation of the propagated position to reinforce the authenticity of the PVT solution and the UAS trajectory in post flight phase.
 - authenticated UAS trajectory.
 - protection of the solution from potential spoofing attacks aimed to manipulate the true position
- **Spoofing detection Module (GSD):** The GSD function outcomes will be integrated in the full report. The input to GSD algorithm is specified in the requirement CFT-SYS-0990 of D2.6 document. The purpose of the GSD algorithm is:
 - to guarantee the authenticity of data generated by the UTM Box, providing indications whether the authenticated PVT solution is genuine (Spoofing / Meaconing free).

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 8 of 36
--	-----------------

 To be able to indicate the level of confidence/trust of the authenticated position during all flight, providing indicators/metrics in correspondence to significant events (i.e. no OSNMA satellites present in the solution, values below threshold of defined indicator).

1.1 Acronyms

Acronyms	Description
APP	Authenticated Position Propagation
CSV	Comma-separated values
EGNSS	European Global Navigation Satellite System
GNSS	Global Navigation Satellite System
GSD	GNSS Spoofing Detection
IMU	Inertial Measurement Unit
OSNMA	Open Service Navigation Message Authentication
SBF	Septentrio Binary Format
ТВС	To be confirmed
TN	Technical Note
UTM	Unmanned Traffic Management

Table 1-1 Acronyms list

@ 2024 CERTIELICHT Reporticipation ALL RIGHTS RESERVED	Page
© 2024 CENTIL FIGHT BEHEIRCIAIRS- ALE NOTTS IN SERVED.	9 of 36

	CERTIFLIGHT	DISSEMINATION LEVEL PU	DELIVERABLE NR D4.2	PAGES 36
certi flight	PROJECT 101082484	TITLE TN7: EGNSS functional te	st report	REV 02

2 Test Procedure

CERTIFLIGHT test procedures are built according to the following identification format: PROC_EGNSS. <NNNNx>, where <NNNN> is the progressive number (E.g. PROC_EGNSS.0010) and x identifies the substeps of each test. The structure of the test procedure is described in the table below.

PROC_EGNSS.NNNNx. Procedure Title					
Step	Activity description	Expected Result	Notes		
S_NN	<step title=""> Procedure description</step>	Test explaining what it is expected for each step of the procedure	Notes for further explanation		

3 EGNSS Requirement Verification Matrix

ReqID	ReqTitle	ReqText	Туре	Verification	D,A,I Justification (Only for A,I,RoD verification)	Status of compliance	Close-out Status
CFT-SYS-0380	APP function	The APP function shall be able to propagate the authenticated drone's position to the next authenticated position in post processing, through the integration of the GNSS and IMU measurements	Functional	Т	-	С	CLOSED
CFT-SYS-0390	APP function state vector	 The APP function shall deliver a navigation state vector composed at least of the following elements: Geodetic drone's position (Lat, Long, altitude) Drone's velocity magnitude 	Functional	Т	-	С	CLOSED

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 10 of 36
--	------------------

	CERTIFLIGHT	DISSEMINATION LEVEL PU	DELIVERABLE NR D4.2	PAGES 36
certi flight	PROJECT 101082484	TITLE TN7: EGNSS functional te	est report	REV 02

		Drone's Heading					
CFT-SYS-0400	GNSS raw	The UTM box shall be able to recover from	Functional	Т	-	С	CLOSED
	measurements	the GNSS receiver and store in the Database					
	database	the following raw measurements in order to					
		allow post-processing:					
		- GNSS time (GPS or GAL)					
		- control parameter which identifies the					
		GNSS constellation					
		- control parameter which identifies the					
		GNSS signal frequency band					
		- control parameters which identify a GAL					
		authenticated satellite message					
		- GNSS satellite PRN (sat ID)					
		- Lock time					
		- Pseudorange					
		- Doppler					
		- Full Carrier Phase					
		- C/N0					
		- GNSS measurements variance					
		(Pseudorange, carrier, Doppler)					
CFT-SYS-0410	CFT-SYS-0410	The UTM box shall be able to recover from	Functional	Т	-	С	CLOSED
		the GNSS receiver and store in the Database					
		the following data in order to allow post-					
		processing:					
		- GNSS time (GPS or GAL)					
		- Position					
		- Velocity					
		- Receiver clock bias					
		- Receiver clock drift					

© 2024 CERTIFLIGHT Beneficiaries- ALL RIGHTS RESERVED.		Page 11 of 36
--	--	------------------

CERTIFLIC HORIZON PROJECT			ERTIFLIGHT		DISSEMINATIO PU		DELIVERABLE NR D4.2		PAGES 36	
		PROJECT	101082484		TN	TITL N7: EGNSS funct	_E ional test rep	ort		REV 02
			 DOPs (GDOP, PDOP, HDOP, V TDOP) Number of Satellites 	/DOP and						
CFT-SYS-0420	GNSS databa	Aiding ase	 The UTM box shall be able to record the GNSS receiver and store in the the following data in order to all processing: GNSS satellites ephemerides the interconstellation clo between GPS and Galileo broadcasted by the Galileo r message. code multipath correction carrier multipath correction 	over from Database low post- ock bias (GGTO) navigation	Functional	Т	-	C	CLOSED	
CFT-SYS-0430	IMU measu databa	raw irements ase	 The UTM box shall be able to record the Inertial Measurement Unit (Instore in the Database the followind order to allow post-processing: Time Calibrated Acceler Calibrated Gyroscopes measurements Calibrated Magner Calibrated Magner Accelerometers, Grimagnetometers measing Accelerometers, Grimagnetometer Accelerometers, Grimagnetometer Accelerometers, Grimagnetometer Accelerometers, Grimagnetometer 	over from IMU) and ng data in erometers etometers yroscope, urements roscopes, c errors t)	Functional	Т	-	PC	OPEN The UT not c provide informa to the IN measure frequen outliers be mitig the pr and can by the high deg in perfo	M box was apable to noise tion related MU. The IMU ement show t spikes and that cannot gated during e-processing not be used APP without gradation rmance. The

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 12 of 36
--	------------------

CERTIFL		CERTIFLIGHT		DISSEMINATION LEVEL PU				DELIVERABLE NR D4.2		R	PAGES 36
certiflight PROJECT 1010			101082484		T	TIT N7: EGNSS funct	LE tional te	st report			REV 02
CFT-SYS-0440	GNSS freque	data ncy	The GNSS Data shall be stored database at minimum 1Hz frequen	d in the .cy	Functional	Т	-		С	CLOSED	
CFT-SYS-0450	IMU freque	data ncy	The IMU data shall be stored in the at minimum 10Hz frequency	database	Functional	Т	-		PC	OPEN Frequen logging i and shows v than 10h in the presents jumps, Unix tin logged correctly presents values. T is caused computa for the micro-co sign the authenti affected data coll	cy of s not stable sometimes alues lower nz. The time datasets s sudden where the me is not y and s invalid his problem d by the high ational loads UTM box ontroller to e data for cation that the IMU ection
CFT-SYS-0460	APP freque	solution ncy	The APP solution, under nominal constant of the solution, under nominal constant of the solution of the soluti	onditions, minimum	Functional	Т	-		С	CLOSED	

© 2024 CERTIFLIGHT Beneficiaries- ALL RIGHTS RESERVED.	Page 13 of 36
--	------------------

certiflight CERTIFLIC PROJECT		CERTIFLIGHT		DISSEMINATION LEVELDELIVERABLE NRPUD4.2					R	PAGES 36
		PROJECT	101082484		١T	TIT N7: EGNSS funct	LE tional test report			REV 02
CFT-SYS-0470	APP fu with	inction GNSS	In absence of trackable GNSS sate APP function shall be able to de	llites, the eliver the	Functional	Т	-	С	CLOSED	
CFT-SYS-0570	APP fu Horizont position accuracy	inction cal	The expected horizontal position shall be better than 1.5 m (confidence level) under the nominal conditions: - At least 4 GAL authenticated messages	accuracy (1 sigma following satellites'	Performance	T	-	PC	OPEN Tested complete condition shows higher er	in not nominal the APP slightly rors
CFT-SYS-0580	APP fu Vertical Position accuracy	inction	 PDOP lower than 6 The expected vertical position accu be better than 1.5 m (1 sigma co level) under the following conditions: At least 4 GAL authenticated messages PDOP lower than 6 	racy shall onfidence nominal satellites'	Performance	T	-	C	CLOSED	
CFT-SYS-0590	APP fu Velocity accuracy	inction /	 The expected velocity accuracy better than 0.2 m/s (1 sigma conditions) At least 4 GAL authenticated messages PDOP lower than 6 	shall be onfidence nominal satellites'			-	C	CLOSED	
CFT-SYS-0600	APP fu heading accuracy	inction /	 The expected Heading accuracy better than 2 degrees (1sigma conditions) At least 4 GAL authenticated messages PDOP lower than 6 	shall be onfidence nominal satellites'	Performance	T	-	C	CLOSED	

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 14 of 36
--	------------------

CERTIFLIC HORIZON PROJECT		CERTIFLIGHT		DISSEMINATION LEVELDELIVERABLE NRPUD4.2					PAGES 36
		ECT 101082484			TIT	LE			REV
certi rlight				٦T	N7: EGNSS funct	ional test report			02
CFT-SYS-0950	APP requir	ed The APP function, in order to pr	ovide the	Functional	Т	-	С	CLOSED	
	input	nominal performance, shall receive	e, as input						
	parameters	from the Data Base, the	following						
		parameters:							
		- Initial GNSS receiver navigation	n solution						
		(position, velocity, clock bias, c	lock drift)						
		- the following GNSS raw data	a, in duai						
		multicenstellation (at least (a) and						
		CNSS time (CRS or CAL) Real	JAL+GPSJ.						
		Breudorange rate (Doppler	-1 C/NO						
		GGTO GNSS measurements' v	j, C/NO, ariance						
		- control parameters which ide	entify the						
		GNSS constellation and sig	nal hand						
		frequency							
		- control parameters which iden	tifv a GAI						
		authenticated satellite messag	ieny a orite						
		- GNSS satellite PRN (Sat ID)							
		- GNSS satellites updated epher	neris						
		- Calibrated IMU measurement	s in body						
		reference frame (accele	, erometer,						
		gyroscope, magnetometer)	,						
		- IMU deterministic error (bi	ias, scale						
		factor or equivalent)							
		- Accelerometers, G	yroscope,						
		Magnetometers measured	urements'						
		variance							
CFT-SYS-0990	GSD requir	ed The GSD, in order to provide the	e nominal	Functional	Т	-	С	CLOSED	
	input	performance, shall receive from	the Data						
	parameters	Base, at least the following parame	eters:						
		- GNSS time (GPS or GAL)							
		- lock time,							

CERTIFLI HORIZON PROJECT		CERTIFLIGHT HORIZON-EUSPA-2021 SPACE		DISSEMINATION LEVELDELIVERABLE NRPUD4.2					PAGES 36
		CT 101082484		Т	TIT	LE ional test report			REV
									02
		 GNSS satellite PRN (sat ID) control parameter which ider GNSS constellation control parameter which ider GNSS measurement frequency C/N0 pseudorange carrier doppler frequency full carrier phase code multipath correction code variance carrier multipath correction receiver clock bias 	ntifies the ntifies the band						
CTF-SYS-480	GSD function	The GSD function shall be discriminate between altered (spo- authentic GNSS signals in post-p using Machine learning models	able to ofed) and processing	Functional	Т	-	С	CLOSED	
CTF-SYS-490	CFT-SYS-0490	The GSD solution shall be time tag the time tag of GNSS measuremen	gged with ts	Functional	Т	-	С	CLOSED	
CTF-SYS-610	GSD spoofing detection capability	The GSD shall be able to detect a attack with a probability of at le (TBC, 1 sigma confidence interval) least 6 satellites are tracked. Note: the probability is TBC bec technique is completely new and neither reference performance ava detailed user requirements for this	spoofing east 80% when at cause the there are ilable nor function.	Performance	Τ	-	C	CLOSED	

© 2024 CERTIFLIGHT Beneficiaries- ALL RIGHTS RESERVED.	Page 16 of 36
--	------------------

4 Test Report

CERTIFLIGHT test reports are built according to the following identification format: REP_EGNSS. <NNNN>, where <NNNN> is the progressive number (E.g. REP_ EGNSS.0010).

Each test report presents one or more procedures and below of those are discussed the specific results.

The EGNSS subset of tests has been led by W4W, and the results in the following sections. These tests are aimed to prove the compliance of the EGNSS Algorithms (GSD/APP) according to the functionalities and the performance envisioned in the specific System Requirements and in the D3.6 Technical Note [AD 4]. TopView has been involved in the test activities for the generation of flight data through the UTM Box and for UAS Operations. Due to issues related to the logging capabilities of the UTM box the tests were performed adopting the MARLIN TO device as better explained in the following sections.

4.1 REP_EGNSS.0010 APP/GSD Input Verification

This paragraph reports the test of the APP/GSD input verification functionality. This test has been performed following the steps in the table below.

	PROC_EGNSS.0010 APP	/GSD Input Verification	
Step	Activity description	Expected Result	Notes
S_01	The Septentrio receiver is configured	The APP_lib shall not	
	in order to log all the packages	raise error in the	
	required in the document D3.6. A	processing of dataset	
	twenty minutes long record will be		
	performed in order to collect IMU		
	and GNSS datasets. The IMU dataset		
	is verified to be compliant for the		
	APP. The "APP_lib" is run and the		
	output of "Data Parsing and		
	Organization" module is checked		
S_02	The Septentrio receiver is configured	The APP_lib shall raise	
	in order to not log all the packages	error in the processing	
	required in the document D3.6. A	of dataset	
	twenty minutes long record will be		
	performed in order to collect IMU		
	and GNSS datasets. The IMU dataset		
	will be modified to not be compliant		
	for the APP. The "APP_lib" is run and		
	the output of "Data Parsing and		
	Organization" module" is checked		
S_03	S_01 and S_02 are repeated for	GSD shows a correct	
	"GSD_lib" without the IMU dataset	behaviour	

© 2024 CEPTIELICHT Ronaficiariac- ALL RICHTS RESERVED	Page
© 2024 CERTI EIGHT BEHEICIAILES- ALL MOITTS RESERVED.	17 of 36

4.1.1 Test execution and results

S_01: APP Input Verification in Nominal conditions.

The Septentrio receiver is configured in order to log all the packages required in the document D3.6 as depicted in the configuration file (Figure 4-1).

setSatelliteTracking,GPS+GALILEO

setSignalUsage, GPSL1CA+GPSL5+GALL1BC+GALE5a, GPSL1CA+GPSL5+GALL1BC+GALE5a setGalOSNMAUsage, loose,E5530A33D5CB60C95016B8AEC74593DBCDF2711D399EA24869173CA229379A15

setGalOSNMAPublicKeys, Key1,

MFkwEwYHKoZIzj0CAQvIKoZIzj0DAQcDQgAEl+tDeJqg9tBSpjhGjs9SeOb234Rl7LjYuEuMejUB9zvjp/2XMkWQ4yFXM4NY97drQnKC49BGztwlhmTW+9m3aw=='

setSBFOutput,Stream1,USB1,MeasEpoch+MeasExtra+GPSNav+PVTCartesian+PVTGeodetic+GPSAlm+GPSIon+GPSUtc+GALAlm+GALNav+GALIon+GALUtc+GALGstGps+Pos CovCartesian+PosCovGeodetic+VelCovCartesian+VelCovGeodetic+DOP+AttEuler+ReceiverTime+SatVisibility+GALAuthStatus,sec1

Figure 4-1 – Septentrio Nominal Configuration

Twenty minutes long record is performed in order to collect IMU and GNSS datasets ("GNSS dataset.sbf" and "IMU dataset.csv").

The IMU dataset is verified to be compliant for the APP, in particular it shall satisfy the following features:

- The dataset shall be delivered and formatted as comma separated value "IMU_dataset.csv" file format.
- The dataset shall present a correct header and to allow the library to properly parse the variables as presented in Figure 4-2
- The IMU dataset shall be logged at minimum 10Hz stable without time holes

```
unix_time,lat,lon,msl,Acc_x_m_s2,Acc_y_m_s2,Acc_z_m_s2,Gyro_x_deg_s,Gyro_y_deg_s
,Gyro_z_deg_s,Mag_x_g,Mag_y_g,Mag_z_g
```

Figure 4-2 – IMU dataset nominal header

The "APP_lib" is run in Matlab Environment and the output of "Data Parsing and Organization" module" is checked showing no triggered alarms.

```
Command Window

>> APP_Lib

APP_lib is running...

Data Organization and Parsing Completed!

fx >>
```

Figure 4-3 – APP_lib nominal response

S_02: APP Input Verification in altered conditions.

Step 1 is repeated introducing the following modifications firstly on the GNSS dataset and checking the output:

1. The name of the GNSS file is changed in "GNSS_dataset_wrong.sbf". The algorithm triggers correctly the *Error Code 100: File not found* (Figure 4-5)

- 2. The file format of the GNSS file is changed in "GNSS_dataset.txt". The algorithm triggers correctly the *Error Code 101: Unsupported File format (*Figure 4-6)
- 3. The "csv" files provided by the sbf parser are modified to present anomalies in data formats in order to not be compliant to comma separated value. The csv files are reformatted as tables, this triggers correctly the *Error Code 200: Invalid Data* (Figure 4-7)
- 4. The configuration file (Figure 4-4 Septentrio Altered Configuration
- 5.) is modified removing an essential package from the logging, the GALAuthStatus which includes information on the GAL satellites with authenticated signals. The algorithm triggers correctly the *Error Code 201: Missing Data* (Figure 4-8)

setSatelliteTracking,GPS+GALILEO
setSignalUsage, GPSL1CA+GPSL5+GALL1BC+GALE5a, GPSL1CA+GPSL5+GALL1BC+GALE5a
setGalOSNMAUsage, loose,E5530A33D5CB60C95016B8AEC74593DBCDF2711D399EA24869173CA229379A15
setGalOSNMAPublicKeys, Key1,
'MrkwEWYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEl+tDeJqg9tBSpjhGjs9SeOb234R17LjYUEuMejUB9zvjp/2XMkwQ4yFXM4NY97drQnKC49BGztwlhmTW+9m3aw=='
setSBFOutput,Stream1,USB1,MeasEpoch+MeasExtra+GPSNav+PVTCartesian+PVTGeodetic+GPSAlm+GPSUn+GPSUtc+GALAlm+GALNav+GALIon+GALUtc+GALGstGps+Pos
CovCartesian+PosCovGeodetic+VelCovCartesian+VelCovGeodetic+DOP+AttEuler+ReceiverTime+SatVisibility,sec1

6. The "csv" files provided by the sbf parser are modified to include incorrect data types (i.e. NaN), this triggers correctly the *Error Code 300: Data Analysis Error (*Figure 4-9)

A similar procedure is repeated for the IMU dataset without touching the GNSS data: The name of the IMU file is changed in "IMU_dataset_wrong.csv". The algorithm triggers correctly the <u>Error Code 100: File not found</u> (Figure 4-5)

The file format of the GNSS file is changed in "IMU_dataset_wrong.xls". The algorithm triggers correctly the *Error Code 101: Unsupported File format (*Figure 4-6)

The header of the "csv" files is modified to present anomalies with respect Figure 4-2 this triggers correctly the *Error Code 200: Invalid Data* (Figure 4-7)

A column of the csv file is removed simulating an error in the logging and writing of the file from the logging, causing the absence of a IMU sensor (i.e. gyroscope). The algorithm triggers correctly the *Error Code 201: Missing Data* (Figure 4-8)

The "csv" is modified to include simulate a not compliant logging rate as showed in Figure 4-10. The dataset shows a not stable logging rate with the number of IMU measurement mostly equal at 8 with instant reach values lower than 5. This triggers correctly the <u>Error Code 300: Data Analysis Error</u> (Figure 4-9)

```
Command Window
APP_lib is running...
Error Code 100: File not found!
```


DISSEMINATION LEVEL	DELIVERABLE NR	PAGES
PU	D4.2	36
TITLE		REV
TN7: EGNSS functional test report		02

.

()

C	Command Window	
	APP_lib is running	
	Error Code 101: Unsupported File format!	
f	ž >>	

Figure 4-6 - App_lib Error 101

Command Window APP_lib is running... Error Code 200: Invalid Data! fx; >>

Figure 4-7 - App_lib Error 200

Command Window APP_lib is running... Error Code 201: Missing Data! $f_{x} >>$

Figure 4-8 - App_lib Error 201

Command Window APP_lib is running... Error Code 300: Data Analysis Error! fx; >>

Figure 4-9 - App_lib Error 300

Figure 4-10 – Altered IMU dataset

S_03: GSD Input Verification in nominal and altered conditions.

	Page
© 2024 CLATH LIGHT BEHENDINGST ALL MONTS RESERVED.	20 of 36

The steps 1 and 2 are repeated for "GSD_lib" in Python Environment considering only the GNSS dataset and checking the behaviour of the library which responded correctly (Figure 4-11, Figure 4-12).

Figure 4-12 – GSD_lib response in nominal condition

4.2 REP_EGNSS.0020 APP Performance Verification

This paragraph reports the test of the APP performance verification functionality. This test will be performed following the steps in the table below.

PROC_EGNSS.0020 APP Performance verification				
Step	Activity description	Expected Result	Notes	
S_01	A preliminary free flight of 20	Data collected satisfy	For free flight is	
	minutes with drone equipped with	the test condition:	meant a flight	
	UTM box shall be performed in order	 At least 4 GAL 	without a predefined	
	to let the onboard receiver to	authenticated	path, to allow the	
	download the full navigation	during the flight	correct initialization	

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 21 of 36
--	------------------

DISSEMINATION LEVEL	DELIVERABLE NR	PAGES
PU	D4.2	36
TITLE		REV
TN7: EGNSS functional test report		02

	message for GPS and Galileo satellites. Once the drone is ready a test flight with has been performed, and the reference trajectory is recovered through RTK	 PDOP <6 Stable IMU measurements Reference trajectory with accuracy of 10cm in position 	of the receiver
S_02	Verify the minimum requirements for APP position/velocity/heading accuracy	The APP shall satisfy the accuracy requirements included in AD 2	
S_03	Verify that APP provides a time- tagged solution in a CSV format	APP provides the output in the correct format	

4.2.1 Test execution and results

S_01 Data acquisition campaign

Some data acquisition campaigns were performed since the TRR together with TopView to test the capability of UTM box to correctly collect the GNSS and IMU data. After some iterations with a total of 12 datasets collected, W4W identified a limitation in the UTM sensor and/or microcontroller to provide stable IMU data, the faced issues were included and described AD 6. In order to cope with the problem and performed a new data collection W4W proposed the adoption of MARLIN TO device internally developed in partnership with the twin company GEA Space s.r.o and rapidly configured for drone's application.

The MARLIN TO has the following main characteristics:

- GNSS Receiver Multi Constellation, Triple Frequency is Septentrio Mosaic X5
- IMU è iNEMO Inertial Sensor
- Magnetometer è IIS2MDC
- Barometer
- Ubuntu based Microprocessor
- Data storage up to 256GB
- Battery with > 1h of autonomy without direct power supply
- Dimensions: 19.4 cm x 10.8 cm x 4.4 cm

Figure 4-13 – MARLIN TO Device

A new test campaign was performed at the end of June (26-27th) near Caserta together with TopView. The MARLIN TO was mounted on a DJI M300 drone (Figure 4-14) and different trajectory were performed and collected (i.e.Figure 4-15), the IMU of the MARLIN TO was configured at 10Hz. This type of approach allowed the W4W to finalize and validate the Data parsing and Feeder of the APP library (see Section 4.1), which took half month in line with the plan presented during the TRR.

Unfortunately, even if W4W tried to shrink the activities, the APP activities are currently in the "Tuning and configuration" phase and was not possible to configure completely the APP to grant a stable solution for the past issue of this Document.

New iterations with TopView were performed to tackle some issues related the complete acquisition of reference information from the Drone's log in particular velocity data and attitude to properly perform the performance verification, and eventually a new test campaign will be expected.

Another test campaign was conducted in September 4-5-11th in order to solve the faced problems. In both scenarios, synchronization issues persisted between the APP solution and the reference RTK due to limitations in the RTK time definition, which lacks millisecond precision. This limitation hinders accurate time alignment, preventing precise performance comparisons. Consequently, these synchronization challenges degraded filter performance and limited the fine-tuning of the internal filter.

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 23 of 36
	25 01 50

DISSEMINATION LEVEL	DELIVERABLE NR	PAGES
PU	D4.2	36
TITLE		REV
TN7: EGNSS functional test report		02

Test Setup mounted on DJI

Figure 4-14 – MARLIN TO M300

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page
© 2024 CENTIFLIGHT BEHEHIGHES- ALL NIGHTS RESERVED.	24 of 36

DISSEMINATION LEVEL	DELIVERABLE NR	PAGES
PU	D4.2	36
TITLE		REV
TN7: EGNSS functional test report		02

Figure 4-15 – Example of Test trajectory

S_02 Performance Verification

For test verification, the flight conducted on June 27th was selected, as the IMU configuration at 10Hz was expected to better align with the expected behaviour of the UTM box. Reference data was extracted and parsed from the drone's internal binary file. The test, however, did not consistently meet nominal conditions, displaying variability in the number of authenticated GALILEO satellites, with moments where fewer than four satellites were authenticated, as illustrated in the Figure 4-16.

Figure 4-16 – Nr of GAL Authenticated Satellites

	Pago
© 2024 CERTIELIGHT Reneficiaries- ALL RIGHTS RESERVED	rage
6 202 FOLKIN EIGHT BEREIKING ALE MONTH REDERVED.	25 of 36

Under these conditions, the APP algorithm demonstrated good performance in terms of accuracy, achieving a horizontal accuracy of **2.21m**, slightly below the required threshold of **1.5m**, and a vertical accuracy of **0.36m**, significantly better than the required performance, as illustrated in the Figure 4-18. Velocity accuracy also met requirements, with an error of **0.04m/s**, surpassing the expected performance level (Figure 4-19). Heading accuracy remained within acceptable limits, though some instability was observed, likely due to rapid shifts in drone heading between +180 and -180 degrees. Excluding these instability points, where error values reached ±360 due to angle definition ambiguities, the average heading error stabilized at **0.22degrees**, as seen in the Figure 4-22. The Figure 4-20 and Figure 4-21 also illustrate respectively the heading behaviour of RTK versus APP solution, and the error including the ambiguity values.

Figure 4-17 – Horizontal Error Accuracy

Figure 4-18 – Vertical Error Accuracy

ſ	© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 26 of 36

Figure 4-19 – Velocity Error Accuracy

Figure 4-20 – APP vs RTK Heading solution

© 2024 CERTIFUCHT Reportigiation ALL RICHTS RESERVED	Page
© 2024 CENTIFLIGHT BEHEINGHES- ALL NIGHTS RESERVED.	27 of 36

Figure 4-21 – Heading Error Accuracy with ambiguity points

The APP algorithm during the test was capable to provide the time tagged solution in a CSV format as shown a small sample in the following Figure

© 2024 CERTIFUCHT Reponsionarian AU RICHTS RESERVED	Page
© 2024 CENTIFLIGHT BEHEIKIGHES- ALL NIGHTS RESERVED.	28 of 36

4.3 REP_EGNSS.0030 GNSS Outages Verification

This paragraph reports the test of the APP behaviour during GNSS Outages. This test will be performed following the steps in the table below.

PROC_EGNSS.0030 GNSS Outages verification			
Step	Activity description	Expected Result	Notes
S_01	The test data collected for EGNSS_0020 will be manually modified to simulate the absence of GNSS measurements for 10,30,60 seconds		
S_02	Verify the APP can deliver a solution in this operative condition and report the accuracy	The APP shall satisfy the requirements included in AD 2	
S_03	Verify that APP provides a time- tagged solution in a CSV format	APP provides the output in the correct format	

4.3.1 Test execution and results

S_01 Data acquisition campaign

See Section 4.2.1

S_02 Performance Verification

The EGNSS.0020 test scenario was used and manually modified to simulate GNSS signal loss for intervals of 10, 30, and 60 seconds. During these outages, the APP maintained its solution based

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 29 of 36
	29 01 30

solely on IMU data, resulting in different levels of accumulated error. Notably, the APP successfully recovered and reconverged to accurate position and velocity levels once GNSS visibility was restored, achieving accuracy consistent with the EGNSS.0020 baseline. The following figures illustrate the error variations in position and velocity over the simulated GNSS outage periods. The high levels of accumulated error can be caused by the sampling rate and noise of IMU measurements; increasing the sampling rate up to 100Hz a better dynamic of the drone can be represented by the IMU sensors and reduce the error. At the moment neither the UTM box and the MARLIN TO devices are able to provide this sampling frequency but it's a good indication for the final product.

Figure 4-24 – Horizontal Error during GNSS Outages

Figure 4-25 – Vertical Error during GNSS outages

© 2024 CEDTICUCUT Papaficiarias ALL PICUTS DESEDVED	Page
© 2024 CENTIFLIGHT BEHEHICIDHEST ALL NIGHTS RESERVED.	30 of 36

S_03 Verify that APP provides a time-tagged solution in a CSV format

The APP algorithm during the test was capable to provide the time tagged solution in a CSV format as shown a small sample in the following Figure

Figure 4-27 – APP Solution. csv sample with GNSS outages

4.4 REP_EGNSS.0040 GSD Performance Verification

PROC_EGNSS.0040 GSD Performance verification			
Step	Activity description	Expected Result	Notes
S_01	Verify the minimum requirements for GSD spoofing detection probability (min. 80%, with 1 sigma confidence interval) when at least 6 satellites are tracked for each constellation	GSD spoofing detection probability is above 80% with 6 satellites tracked for each constellation	
S_02	Verify that GSD provides a time- tagged signal classification in a CSV format	GSD provides the output in the correct format	

4.4.1 Test execution and results

S_01: Verify the minimum requirements for GSD spoofing detection probability, when at least 6 satellites are tracked for each constellation.

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 31 of 36
	31 OT 36

The test set will be created using data from the JRC acquisition campaigns, incorporating unused data from the training phase. It will encompass six distinct scenarios, comprising authentic signals and five different types of spoofing cases, to be utilized in the verification protocol.

Namely, the test set will include one 30-minute acquisition (frequency=1 Hz) for each type of spoofing attack: meaconing (100 ms delay), meaconing (100 ns delay), advanced, synchronized, and SCER. Each acquisition will consist of 5 minutes of authentic signals followed by 25 minutes of attacks on both GPS (L1/L5 frequency bands) and Galileo (E1/E5 frequency bands) constellations (6+6 satellites). The data was stored in SBF format and contained all necessary features. The five datasets have been combined to be utilized in the verification plan.

For each epoch, the function, referred to as "GSD_lib", will acquire the input from the "Data Parsing and Organization" module and generates an output file named "GSD_solution.csv," which includes the time parameter (GPStime) and a binary flag (Spoofing_flag) indicating if a spoofing attack has been detected or not. Epochs containing spoofed/authentic signals will be labelled by the "Spoofing_flag" set respectively to 1 and 0. The function was required to achieve a minimum spoofing attack detection probability (Recall) of 80% within a 1 sigma confidence level. Results are shown in Figure 4-28, which represents the confusion matrix for the binary classification of the dataset discussed above.

Namely, the rows of the confusion matrix represent the true labels of the signals, indicating "0" if the signal is authentic and "1" if it has been spoofed, while the columns represent the predicted labels. For instance, the cell "00" indicates the number of epochs where an authentic signal (class 0) has been correctly predicted as authentic. In particular, the values reported inside the cells represent the count of epochs falling into each category.

In more detail, the four cells of the matrix, indicated as (a,b), where "a" and "b" refer respectively to row and column numbers, can be interpreted as follows:

- Cell (0, 0) TN (True negatives): An authentic signal (class 0) has been correctly predicted as authentic (0).
- Cell (0, 1) FP (False positives): An authentic signal (class 0) has been incorrectly predicted as spoofed (1).
- Cell (1, 0) FN (False negatives): A spoofed signal (class 1) has been incorrectly predicted as authentic (0).
- Cell (1, 1) TP (True positives): A spoofed signal (class 1) has been correctly predicted as spoofed (1).

From the values reported in the confusion matrix, it is also possible to derive two parameters summarizing the performance of the model: accuracy and recall. The *accuracy* is calculated as the proportion of correctly predicted instances (both authentic and spoofed) out of the total instances evaluated. Mathematically, it is expressed as:

$$Accuracy = (TP + TN)/(TP + FP + TN + FN)$$

On the other hand, the *recall*, also known as sensitivity or true positive rate, measures the proportion of actual spoofed signals that were correctly identified. It is calculated as:

Recall =
$$TP/(TP + FN)$$
.

© 2024 CERTIFLIGHT Beneficiaries- ALL RIGHTS RESERVED. Page 32 of 36

In our case, the values for the accuracy and recall obtained in this test amount respectively to 0.9333 (93%) and 0.976 (98%). For this reason, we consider the requirement for GSD of featuring a minimum spoofing attack detection probability (Recall) of 80% fully met.

Figure 4-28 Confusion Matrix for the verification predictions of the GSD algorithm utilizing a single multi-attack dataset

To verify if the performance is robust within the 1 sigma confidence interval, we repeated the predictions for 10 test campaigns for each type of attack. All campaigns contained data which was not used during the training process and, as previously discussed, each campaign consisted of 30-minute acquisitions, where the first 5 minutes contained authentic signals and the remaining 25 minutes contained only spoofed ones. Our goal was to ensure that at least **68%** of these campaigns (7/10) met the performance benchmarks (Recall > 80%), which corresponds to achieving a performance level within the 1 sigma confidence interval. The results are presented in Table 4-1 demonstrating that all test campaigns (10/10) for each type of attack meet the requirement of achieving a spoofing detection probability (Recall) greater than 80%. As an example of the reliability of our spoofing detection capacity, we also provide the confusion matrix for a single test campaign (out of the 10 conducted) for the meaconing (100 ns delay) attack (Figure 4-29), from which the values for the accuracy and recall can be derived, amounting respectively to 0.981 (**98%**) and 0.977 (**98%**).

Type of attack	#Test campaigns featuring Recall > 80%
Meaconing	10/10
(100 ms delay)	
Meaconing	10/10
(100 ns delay)	
Advanced	10/10

Synchronized	10/10
SCER	10/10

S_02: Verify that GSD provides a time-tagged signal classification in a CSV format

We also verified that GSD's output was provided in a file named "GSD_solution.csv", including the GPS time indication and the corresponding spoofing flag for the entire epoch, as depicted in Figure 4-30

© 2024 CERTIFLIGHT Beneficiaries– ALL RIGHTS RESERVED.	Page 34 of 36
	34 01 30

Α	В	C	
GPStime,Spoofing_flag			
1403514537,0			
1403514538,0			
1403514539,0			
1403514540,0			
1403514541,0			
1403514542,0			
1403514543,0			
14035145	644,0		
14035145	i45,0		
14035145	46, 0		
14035145	647,0		
14035145	48,0		
14035145	i49,0		
14035145	50,0		
1403514551,0			
1403514552,0			
1403514553,0			
1403514554,0			
1403514555,0			
1403514556,0			
1403514557,0			
1403514558,0			
1403514559,0			
1403514560,0			
14035145	61.0 GSD_solut	ion (+)	

Figure 4-30 An example of output file for the GSD function

© 2024 CERTIFIC CHT Papafigiariag ALL RICHTS RESERVED	Page
© 2024 CENTIFLIGHT BEHEHLIGHES- ALL NIGHTS RESERVED.	35 of 36

d-flight UPVISION

© 2024 CERTIFICAT Reporting ALL RICHTS RESERVED	Page
© 2024 CENTIFLIONT BEHEIICIAIES- ALL NIONTS RESERVED.	36 of 36